8,497 research outputs found

    Symmetry Representations in the Rigged Hilbert Space Formulation of Quantum Mechanics

    Get PDF
    We discuss some basic properties of Lie group representations in rigged Hilbert spaces. In particular, we show that a differentiable representation in a rigged Hilbert space may be obtained as the projective limit of a family of continuous representations in a nested scale of Hilbert spaces. We also construct a couple of examples illustrative of the key features of group representations in rigged Hilbert spaces. Finally, we establish a simple criterion for the integrability of an operator Lie algebra in a rigged Hilbert space

    Complex Energies and Beginnings of Time Suggest a Theory of Scattering and Decay

    Full text link
    Many useful concepts for a quantum theory of scattering and decay (like Lippmann-Schwinger kets, purely outgoing boundary conditions, exponentially decaying Gamow vectors, causality) are not well defined in the mathematical frame set by the conventional (Hilbert space) axioms of quantum mechanics. Using the Lippmann-Schwinger equations as the takeoff point and aiming for a theory that unites resonances and decay, we conjecture a new axiom for quantum mechanics that distinguishes mathematically between prepared states and detected observables. Suggested by the two signs ±iϵ\pm i\epsilon of the Lippmann-Schwinger equations, this axiom replaces the one Hilbert space of conventional quantum mechanics by two Hardy spaces. The new Hardy space theory automatically provides Gamow kets with exponential time evolution derived from the complex poles of the SS-matrix. It solves the causality problem since it results in a semigroup evolution. But this semigroup brings into quantum physics a new concept of the semigroup time t=0t=0, a beginning of time. Its interpretation and observations are discussed in the last section.Comment: 27 pages, 3 figure

    Relativistic Partial Wave Analysis Using the Velocity Basis of the Poincare Group

    Get PDF
    The velocity basis of the Poincare group is used in the direct product space of two irreducible unitary representations of the Poincare group. The velocity basis with total angular momentum j will be used for the definition of relativistic Gamow vectors.Comment: 14 pages; revte

    Production-decay interferences at NLO in QCD for t-channel single-top production

    Full text link
    We present a calculation of O(\alpha_s) contributions to the process of t-channel single-top production and decay, which include virtual and real corrections arising from interference of the production and decay subprocesses. The calculation is organized as a simultaneous expansion of the matrix elements in the couplings \alpha_{ew},\alpha_s and the virtuality of the intermediate top quark, (p_t^2-m_t^2)/m_t^2 ~ \Gamma_t/m_t, and extends earlier results beyond the narrow-width approximation.Comment: 33 pages, 6 Figure

    Irreversible Quantum Mechanics in the Neutral K-System

    Get PDF
    The neutral Kaon system is used to test the quantum theory of resonance scattering and decay phenomena. The two dimensional Lee-Oehme-Yang theory with complex Hamiltonian is obtained by truncating the complex basis vector expansion of the exact theory in Rigged Hilbert space. This can be done for K_1 and K_2 as well as for K_S and K_L, depending upon whether one chooses the (self-adjoint, semi-bounded) Hamiltonian as commuting or non-commuting with CP. As an unexpected curiosity one can show that the exact theory (without truncation) predicts long-time 2 pion decays of the neutral Kaon system even if the Hamiltonian conserves CP.Comment: 36 pages, 1 PostScript figure include

    Gamow-Jordan Vectors and Non-Reducible Density Operators from Higher Order S-Matrix Poles

    Get PDF
    In analogy to Gamow vectors that are obtained from first order resonance poles of the S-matrix, one can also define higher order Gamow vectors which are derived from higher order poles of the S-matrix. An S-matrix pole of r-th order at z_R=E_R-i\Gamma/2 leads to r generalized eigenvectors of order k= 0, 1, ... , r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E_R-i\Gamma/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher order poles, the microphysical state obeys a purely exponential decay law.Comment: 39 pages, 3 PostScript figures; sub2.eps may stall some printers and should then be printed out separately; ghostview is o.
    • …
    corecore